(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))

Rewrite Strategy: FULL

(1) CpxTrsToCpxRelTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to relative TRS where S is empty.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))

S is empty.
Rewrite Strategy: FULL

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
f/0
g/0
g/1

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f)) → :(g, +(x, a))

S is empty.
Rewrite Strategy: FULL

(5) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
:(+(x, y), z) →+ +(:(x, z), :(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / +(x, y)].
The result substitution is [ ].

(6) BOUNDS(n^1, INF)